Low-Rank Solution for Nonlinear optimization over AC Transmission Networks

Javad Lavaei

Department of Electrical Engineering Columbia University

Joint work with Somayeh Sojoudi and Ramtin Madani

Power Networks

□ Optimizations:

- Optimal power flow (OPF)
- Security-constrained OPF
- State estimation
- Network reconfiguration
- Unit commitment
- Dynamic energy management

☐ Issue of non-convexity:

- Discrete parameters
- Nonlinearity in continuous variables

☐ Transition from traditional grid to smart grid:

- More variables (10X)
- Time constraints (100X)

Nonlinear Optimizations

- ☐ OPF-based problems solved on different time scales:
 - Electricity market
 - Real-time operation
 - Security assessment
 - Transmission planning
- ☐ Existing methods: (i) linearization, (ii) local search
- ☐ Question: How to find the best solution using a scalable robust algorithm?
- ☐ Approach: Push all nonlinearities into a single rank constraint
- ☐ Applications: (i) static/dynamic optimization, (ii) decentralized control

Old Results

(joint work with Steven Low, Somayeh Sojoudi, David Tse, Baosen Zhang, Stephen Boyd, Eric Chu and Matt Kranning)

Project 1: How to solve a given OPF in polynomial time?

- ☐ A sufficient condition to globally solve OPF:
 - Numerous randomly generated systems
 - IEEE systems with 14, 30, 57, 118, 300 buses
 - European grid

Project 2: Find network topologies over which optimization is easy?

- Distribution networks are fine.
- Every transmission network can be turned into a good one.

Project 3: How to design a distributed algorithm for solving OPF?

- ☐ A practical (infinitely) parallelizable algorithm
- ☐ It solves 10,000-bus OPF in 0.85 seconds on a single core machine.

New Results

(joint work with Somayeh Sojoudi and Ramtin Madani)

- 1- Optimization: How to do optimization over mesh networks?
- 2- Decentralized control: How to design an optimal distributed controller?

□ Approach:

Quadratic optimization in x

Linear optimization in xx^T

Remove the rank constraint and penalize its effect

Replace xx^T with a matrix W subject to $W \succeq 0$ and $rank\{W\} = 1$

Geometric Intuition: Two-Generator Network

minimize $f_1(P_1) + f_2(P_2)$ subject to $(P_1, P_2) \in \mathcal{P}$

minimize
$$f_1(P_1) + f_2(P_2)$$

subject to $(P_1, P_2) \in \mathcal{P}$

minimize $f_1(P_1) + f_2(P_2)$ subject to $(P_1, P_2) \in conv(\mathcal{P})$

Optimal Power Flow

Trick: Replace VV^* with a matrix $W \succeq 0$ subject to rank $\{W\} = 1$.

Various Relaxations

- ☐ SDP relaxation:
 - IEEE systems
 - SC Grid
 - European grid
 - Random systems

☐ Exactness of SDP relaxation and zero duality gap are equivalent for OPF.

Theorem

Exact relaxation for DC/AC distribution and DC transmission networks.

Response of SDP to Equivalent Formulations

- 1. Equivalent formulations behave differently after relaxation.
- SDP works for weakly-cyclic networks with cycles of size 3 if voltage difference is used to restrict flows.

Low-Rank Solution

Definition

Define η as the minimum number of vertices whose removal from the power network eliminates all cycles of the network.

Theorem

If OPF is feasible, then its relaxation has a solution $(\mathbf{W}^{\mathrm{opt}}, \mathbf{P}_{G}^{\mathrm{opt}}, \mathbf{Q}_{G}^{\mathrm{opt}})$ such that $\mathrm{rank}\{\mathbf{W}^{\mathrm{opt}}\} \leq \eta + 1$.

Penalization of Rank Constraint

☐ How to turn a low-rank solution into a rank-1 solution?

☐ Perturbed SDP relaxation:

$$\sum_{k \in \mathcal{G}} f_k(P_{G_k}) \longrightarrow \sum_{k \in \mathcal{G}} f_k(P_{G_k}) - \left[\varepsilon \sum_{(I,m) \in \mathcal{L}} \operatorname{Re}\{W_{Im}\} \right]$$

10-bus cycle (case I)

○ Eigs of **W** for ε =0:

0.0132, 0.0146, 0.0381, 0.0694, 0.0896, 0.2134, 0.3167, 0.5424, 1.4405, 7.3939

o Eigs of **W** for ε =10⁻⁵:

0, 0, 0, 0, 0, 0, 0, 0, 0, 10.5

10-bus cycle (case II)

Decentralized Control Problem as Low-Rank Optimization

- □ Consider the dynamical system: $\begin{cases} x[\tau+1] = Ax[\tau] + Bu[\tau] \\ y[\tau] = Cx[\tau] \end{cases}, \quad \tau = 0, 1, 2, ...$
- ☐ Optimal decentralized control (ODC) problem:

Controller	Objective function	Box constraints
$u[\tau] = Ky[\tau]$ (diagonal K)	$\sum_{\tau=0}^{p} \left(x[\tau]^{T} Q[\tau] x[\tau] + u[\tau]^{T} R[\tau] u[\tau] \right)$	$\underline{\alpha}[\tau] \le x[\tau] \le \overline{\alpha}[\tau]$ $\underline{\beta}[\tau] \le u[\tau] \le \overline{\beta}[\tau]$

☐ ODC is a quadratic optimization.

Decentralized Control Problem as Low-Rank Optimization

☐ Define a vector of variables:

 \square ODC is a linear optimization in terms of vv^T .

Definition

Convexified ODC: Replace vv^T with a positive semidefinite matrix **W** in the reformulated ODC.

Theorem

Convexified ODC has a solution Wopt with rank at most 4.

Integrated OPF + Dynamics

 \Box Synchronous machine with interval voltage $|E|e^{j\delta}$ and terminal voltage $|V|e^{j\theta}$.

Swing equation: $\frac{d\delta(t)}{dt} = \omega(t)$ $M\frac{d\omega}{dt} = -D\omega(t) + P_M(t) - \frac{|E||V(t)|\sin(\delta(t) - \theta(t))}{\alpha}$

Define: $\mathbf{x}(t) = \begin{bmatrix} 1 & \omega(t) & \text{Re}\{E\} & \text{Im}\{E\} & \text{Re}\{V(t)\} & \text{Im}\{V(t)\} \end{bmatrix}^H$

□ Linear system: $\frac{dW_{14}(t)}{dt} = W_{32}(t)$ $\frac{dW_{12}(t)}{dt} = -\frac{D}{M}W_{12}(t) - \frac{1}{M\alpha}(W_{45}(t) - W_{36}(t)) + \frac{1}{M}P_M(t)$

Conclusions

Focus:
♣ Nonlinear optimization
♣ Decentralized control

- ☐ Developed a low-rank optimization method
- Developed various theories to support the method